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In this paper, we introduce penalized spline estimators for the unknown 
function and a parameter vector in a semiparametric regression model with 
right censored data. In order to obtain this estimator accurately and 
efficiently, we used penalized spline method based on three important 
selection criteria such as corrected Akaike’s information criterion (AIC), 
generalized cross-validation (GCV) and Mallows’ Cp criterion (MCp). The 
purpose of the study is to illustrate the performance of penalized regression 
spline method for estimating the right-censored data and also comparing the 
mentioned three selection methods in selection of smoothing parameter. The 
ideas that expressed in this study are demonstrated in a real cancer patients’ 
data and a Monte Carlo simulation using different censoring levels and 
sample sizes. Thus, the appropriate selection criteria are provided for a 
suitable smoothing parameter selection. Cp gave satisfying results for this 
study. 
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1. Introduction 

*Consider the semiparametric regression model 
(Eq. 1); 

 
𝑇𝑖 = 𝑋𝑖𝛽𝑖 + 𝑓(𝑍𝑖) + 𝜀𝑖 , 𝑖 = 1, … , 𝑛                                        (1) 

 
where 𝑇𝑖’s are response observations, 𝑋𝑖 =
(𝑋𝑖1, … , 𝑋𝑖𝑝)is p-dimensional vector, 𝑍𝑖’s are 

observations of an extra univariate variable, 𝛽 =
(𝛽1, … , 𝛽𝑝)′is an unknown p-dimensional parameter 

vector to be estimated, 𝑓(. )is an unknown smooth 
function and 𝜀𝑖’s are random error terms with zero 
mean and variance 𝜎2. There are many approaches 
to estimate β and f in the model (1) with uncensored 
data. One of the primary approaches is the penalized 
splines method discussed by Eilers and Marx (2010) 
and Ruppert et al. (2003). Furthermore, Hall and 
Opsomer (2005), and Liang (2006) gave some 
theoretical results on penalized splines. 

In our study, we are interested in estimating the 
parameter vector β and unknown function f in model 
(1), when the 𝑇𝑖’s are observed incompletely and 
right censored by a random variable 𝐶𝑖 , 𝑖 = 1, … , 𝑛 
while 𝑋𝑖and 𝑍𝑖are observed completely. Therefore, 
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incomplete observations {𝑋𝑖, 𝑍𝑖 , 𝑇𝑖} are transformed 
to complete observations  {𝑋𝑖, 𝑍𝑖 , 𝐿𝑖 , 𝛿𝑖 , 1 ≤ 𝑖 ≤ 𝑛} as 
follows 

 
𝐿𝑖 = 𝑚𝑖𝑛 (𝑇𝑖 , 𝐶𝑖)  

 
and 

 
𝛿𝑖 = 𝐼(𝑇𝑖 ≤ 𝐶𝑖), 𝑖 = 1, … , 𝑛                          (2) 

 
where 𝐿𝑖 ’s are the adjusted response observations 
with unknown distribution M, 𝐶𝑖’s are the values of 
the censoring variable and 𝛿𝑖’s are the values of the 
censoring indicator. As can be seen from the Eq. 2, 
censoring indicator provides the censoring 
information; if ith observation is complete then 𝛿𝑖 
takes 1 otherwise 0. Also, we assume that T and C are 
independent random variables with unknown 
distributions F and G, respectively.  

In this paper, we focus on the model (1) when the 
response variable is incompletely observed (or 
censored data). In the literature, for the censored 
linear and nonlinear regression models, appropriate 
estimators are defined by replacing incomplete 
observations with synthetic data (Buckley and 
James, 1979; Koul et al., 1981; Lai and Ying, 1992) 
for simplicity, we consider the transformed versions 
of the censored observations, called as synthetic 
data, proposed by Koul et al. (1981). We apply a 
penalized regression spline estimator to the 
synthetic data to determine a proper smoothing 
parameter selection criterion. The above estimator is 

http://www.science-gate.com/
http://www.science-gate.com/IJAAS.html
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:duaydin@hotmail.com
https://doi.org/10.21833/ijaas.2017.08.024
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21833/ijaas.2017.08.024&amp;domain=pdf&amp


Dursun Aydin, Ersin Yilmaz / International Journal of Advanced and Applied Sciences, 4(8) 2017, Pages: 167-174 

168 
 

a generalization of the well-known penalized spline 
estimator for the model (1). 

In our study, the main difference is that we 
consider a randomly right censored semiparametric 
regression model, estimated by using several 
smoothing parameter selection criteria. The basic 
idea is to find a useful selection criterion that 
provides a good approximation to the model (1). 
Also it is aimed that the comparison between the 
performances of these different selection criteria. 

In case of the censored data, a number of authors 
have studied a semiparametric regression model (1). 
Examples of this study include Chen and Khan 
(2001), Qin and Jing (2000), Wang and Li (2002), 
Orbe et al. (2003), Lu and Cheng (2007), and Zhou 
and Liang (2009). Also note that, estimation 
procedure for right-censored response observations 
is proposed by Kaplan and Meier (1958) and then 
Miller (1976) proposed Kaplan-Meier weights for 
linear regression model estimation using with K-M 
estimator. Also, Stute (1999) studied on nonlinear 
censored regression model with K-M weights and 
inspected its theoretical and asymptotical 
properties. In addition to these, Koul et al. (1981) 
suggested synthetic data transformation with using 
K-M estimator as an alternative for K-M weights. 

The rest of the paper is designed as follows. 
Section 2 gives information about the preliminaries 
and methodology. The ideas on the features of the 
model and the proposed estimator are given in 
section 3. In Section 4, it is discussed the smoothing 
parameter selection criteria. Section 4 provides a 
real data example and a Monte Carlo simulation 
study. Finally, the conclusions are presented in the 
Section 5. 

2. Preliminaries and methodology 

Let F, G and M be the cumulative distribution 
functions of Y, C and L respectively. These are 
assumed to be positive random variables with 
distribution functions 

 
𝐹(𝑠|𝑋, 𝑍) = 𝑃(𝑇 ≤ 𝑠|𝑋, 𝑍), 𝐺(𝑠|𝑋, 𝑍) = 𝑃(𝐶 ≤ 𝑠|𝑋, 𝑍)  

 

and  
 

𝑀(𝑠|𝑋, 𝑍) = 𝑃(𝐿 ≤ 𝑠|𝑋, 𝑍) (𝑠 ∈ 𝑅)                                    (3) 
 

from Eq. 3 their unknown survival functions are 
 

�̅�(𝑠|𝑋, 𝑍) = 𝑃(𝑇 > 𝑠|𝑋, 𝑍), �̅�(𝑠|𝑋, 𝑍) = 𝑃(𝐶 > 𝑠|𝑋, 𝑍)  
  

and 
 

�̅�(𝑠|𝑋, 𝑍) = 𝑃(𝐿 > 𝑠|𝑋, 𝑍) (𝑠 ∈ 𝑅)                                         (4) 
 

Under assumption that T and C are independent, 
survival function M can be written as 

 

�̅�(𝑠|𝑋, 𝑍) =
�̅�(𝑠|𝑋, 𝑍). �̅�(𝑠|𝑋, 𝑍)𝑃(𝑇 > 𝑠|𝑋, 𝑍). 𝑃(𝐶 > 𝑠|𝑋, 𝑍) = 𝑃(𝐿 >
𝑠|𝑋, 𝑍)  

 

To assess the statistical accuracy of the model 
which is computed from censored data set, we also 
assume that 
𝜏𝐹 = inf[𝑠: �̅�(𝑠|𝑋, 𝑍) = 1] , 𝜏𝐺 = [𝑠: �̅�(𝑠|𝑋, 𝑍) = 1]  
𝜏𝑀 = inf[𝑠: �̅�(𝑠|𝑋, 𝑍) = 1]                                (5) 

 
where 𝜏𝐹<∞, F and G distributions have no jumps 
and G is continuous. It follows from (3) that, there is 
a probability distribution for T at each possible 
values for X and Z. From Eq. 5, for given s point, the 
mean of this distribution can be defined as 

 

∫ 𝐹(𝑠|𝑋, 𝑍)𝑑𝑠 =
∞

0 ∫ 𝐹(𝑠|𝑋, 𝑍)𝑑𝑠 = 𝐸(𝑇|𝑋 = 𝑥, 𝑍 = 𝑧)
𝜏𝐹

0
   (6) 

 
Because of the nature of the censored data, the 

estimation of semiparametric model cannot be 
directly computed by the traditional methods here. 
To get rid of this problem Koul et al. (1981) 
proposed a synthetic data transformation. Normally, 
right-censored response variable (Y) and updated 
response variable (T) have different expectations 
because of censoring but synthetic data 
transformation provide a regularization for solving 
this problem (see Appendix A). That is, the censored 
response observations 𝐿𝑖’s are converted to a 
synthetic response values 𝑇𝑖𝐺  according to the rule 

 

𝑇𝑖𝐺 =
𝛿𝑖𝐿𝑖

�̅�(𝐿𝑖)
=

𝛿𝑖𝐿𝑖

1−𝐺(𝐿𝑖)
                                     (7) 

 
where 𝐺(. ) is the common distribution of the 
censoring variable 𝐶𝑖 as mentioned in the 
introduction to this section. In the censored data 
applications, however, the censoring distribution G is 
usually unknown. For this reason, to estimate the 
components of the model (1) the ordinary methods 
cannot be used directly here. To overcome this 
problem Koul et al. (1981) proposed to replace G 
with its Kaplan Meier estimator, given by 

 

�̂̅�(𝑠) = 1 − �̂�(𝑠) = ∏ (
𝑛−𝑖

𝑛−𝑖+1
)

𝐼(𝐿𝑖≤𝑠,𝛿𝑖=0)
𝑛
𝑖=1  , 𝑠 ≥ 0             (8) 

  
where 𝐿(𝑖)

′ 𝑠, 𝐿(1) ≤ 𝐿(2) ≤ ⋯ ≤ 𝐿(2) are the ordered 

values of variable 𝐿(𝑖) and 𝛿(𝑖)values are the ordered 

associated with values of 𝐿(𝑖). Substituting �̂̅�(𝑠) =

1 − �̂�(𝑠) for 𝐺(. ) in (7), we obtain the following 
synthetic data: 
 

𝑇𝑖𝐺 =
𝛿𝑖𝐿𝑖

�̂̅�(𝐿𝑖)
=

𝛿𝑖𝐿𝑖

1−�̂�(𝐿𝑖)
                                                          (9) 

 

We will now see how to estimate the smooth 
function f(Z) and the regression coefficients vector 𝛽, 
based on the above synthetic observations. For these 
purposes, several estimation methods, such as 
smoothing spline, kernel smoothing and regression 
spline, are improved in the literature. For 
convenience, we use regression spline method to 
estimate the unknown regression function and 
parametric coefficients in the model (1). This 
estimate procedure is explained in the following 
section. 
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2.1. Derivation of the estimator 

Now we consider the ideas described above to 
apply the penalized spline method to the case of 
censored data. In this method, f(Z) is approximated 
by rth degree penalized spline with truncated 
polynomial basis (Ruppert et al., 2003):  

 
𝑓(𝑍; 𝛼) = 𝛼0 + 𝛼1𝑍 + 𝛼2𝑍2 + ⋯ + 𝛼𝑟𝑍𝑟 + ∑ 𝑏𝑘(𝑍 −𝐾

𝑘=1

𝜅𝑘)+
𝑟                      (10) 

 
where 𝑟 ≥ 1is an integer that indicates the degree of 
penalized spline and (𝑍 − 𝜅𝑘)+ = (𝑍 − 𝜅𝑘) if 
(𝑍 > 𝜅𝑘) and 0 otherwise. Also 𝜅1 < ⋯ < 𝜅𝐾 are the 
specifically selected knots {min(𝑍𝑖) ≤ 𝜅1 < ⋯ <
𝜅𝐾 ≤ max (𝑍𝑖)}.  

There are several studies about selection of 
number of knots. In this study we selected knots 
according to full search algorithm (FSA) method 
which is expressed in Ruppert et al. (2003). 

Using the above truncated polynomial and (9), it 
follows that the censored regression model (1) can 
be modified as a mixed model, given by 

 
𝑇𝑖�̂� = 𝛽1𝑋1𝑖 + ⋯ + 𝛽𝑝𝑋𝑝𝑖 + 𝛼0 + 𝛼1𝑍𝑖 + ⋯ + 𝛼𝑟𝑍𝑖

𝑟 +

∑ 𝑏𝑘(𝑍𝑖 − 𝜅𝑘)+
𝑟 + 𝜀𝑖�̂�

𝐾
𝑘=1                    (11) 

 
where  𝑖 = 1, … , 𝑛 and 𝑇𝑖�̂� ’s are the synthetic 
response observations 𝜀𝑖�̂� ’s are random error terms 
for given G and 𝑛 → ∞, 𝐸(𝜀𝑖�̂�) ≅ 0 (see Appendix B). 
Thus, we can fit model (1) using penalized spline 
through the mixed model (11). In a matrix and 
vector form, the model (11) can be rewritten as 
Brumback et al. (1999) and Ruppert et al. (2003) 

 
T�̂� = XB + Ab + 𝜀�̂�                   (12) 

 
Where 
 

 B = (𝛽1, … , 𝛽𝑝, 𝛼0, … , 𝛼𝑟)
′
, b = (𝑏1, … , 𝑏𝐾)′, T�̂� =

(𝑡1�̂� , … , 𝑡𝑛�̂�)  
 

and 
 

ε�̂� = (𝜀1�̂� , … , 𝜀𝑛�̂�). 
 

X and A are design matrices, given by 
 

𝐗 = [

𝑋1𝑖 … 𝑋𝑝𝑖

⋮ ⋱ ⋮
𝑋1𝑛 … 𝑋𝑝𝑛

 1 … 𝑍1
𝑟

 ⋮ ⋮ ⋮
 1 … 𝑍𝑛

𝑟
] , 𝐀 =

[
(𝑍1 − 𝜅1)+

𝒓 … (𝑍1 − 𝜅𝐾)+
𝒓

⋮ ⋮ ⋮
(𝑍𝑛 − 𝜅1)+

𝒓 … (𝑍1 − 𝜅𝐾)+
𝒓

]  

 
The penalized spline estimators B̂ =

(�̂�1, … , �̂�𝑝, �̂�1, … , �̂�𝑟)
′
, b̂ = (�̂�1, … , �̂�𝐾)

′
of (𝐵, 𝑏) are 

obtained by minimizing the penalized least-squares 
criterion 

 

𝑃𝑅𝑆𝑆(B; b) = (T�̂� − XB − Ab)′(T�̂� − XB − Ab) + 𝜆b′Db(13) 
 

where D = 𝑑𝑖𝑎𝑔(0𝑝+1, 1𝐾) that is D is a diagonal 

penalty matrix whose first (p + 1) elements are 0, 
and the remaining elements are 1.  

The part 𝜆b′Db in (13) is called a penalty term 
because it penalizes curvatures in the function f, thus 
yielding a smoother result. The amount of penalty is 
controlled by a smoothing parameter𝜆 > 0. In 
general, large values of 𝜆 produce smoother 
estimators while smaller values produce more 
wiggly estimators. As can be seen from here, the 
parameter 𝜆 plays a key role in estimating of the 
model (11). Also, one of our tasks is to select an 
optimal value of the 𝜆 in here. This problem is 
discussed in section (4). 

Minimization of the criterion (13) leads to the 
system of equations 

 

[
X′X X′A
A′X (A′A + λD)

] [
B
b

] = [X′
A′

] T�̂�                                             (14) 

 
Using the Eq. 14, we obtain the regression spline 

estimator for the coefficients vector b in the model 
(12), given by 

 
b̂ = (A′A + λD)−1A′(T�̂� − XB)                                (14a) 

 
Then, substituting this estimator of b into (13), 

we obtain 
 

B = (X′U−1X)−1X′U−1T�̂�                                             (14b) 
 

where U−1 = I − A(A′A + λD)−1A and thus, the 
vector of fitted values is given by 

 

T̂�̂� = (XB̂ + Ab̂) = HλT�̂�   
 

where 
 

Hλ = A(A′A + λD)−1A′ + (I − A(A′A +
λD)−1A′)X(X′U−1X)−1X′U−1                       (14c) 

2.2. Estimation of variance 

In practice smoothing parameter 𝜆 depends on 

variance of the error terms ε�̂� = T�̂� − Ab̂ − XB̂. As in 
linear regression, we can develop an estimator for 𝜎2 
from the error or residuals sum of squares (RSS) 

 

𝑅𝑆𝑆 = (T�̂� − T̂�̂�)
′
(T�̂� − T̂�̂�) = (T�̂� − HλT�̂�)′(T�̂� − HλT�̂�) =

‖(I − Hλ)T�̂�‖2                                            (15) 

 
where Hλis a smoother matrix, as in defined in(14c). 
Thus, an estimator of 𝜎2 is obtained as 

 

�̂�2 =
𝑅𝑆𝑆

𝑡𝑟(I−Hλ)2
=

‖(I−Hλ)T�̂�‖
2

𝑡𝑟((I−Hλ)′(I−Hλ))
= 𝑀𝑆𝐸                             (16) 

 
where 𝑡𝑟(I − Hλ)2 represents the degrees of freedom 
(DF) for residuals. The quantity MSE is called the 
mean square Terror. As in linear regression, DF can 
be used in estimation of 𝜎2. Since MSE has a 
negligible bias term, the Eq. 16 is an unbiased 
estimate of 𝜎2 (Ruppert et al., 2003).  
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Furthermore, it is easy to see that the MSE which 
is the expected value of RSS is 

 
𝐸(𝑅𝑆𝑆) = 𝜎2[𝑛 − 𝑡𝑟(2H𝜆 − H𝜆

2)] + 𝐸(T�̂�)(I − H𝜆)′(I −

H𝜆)𝐸(T�̂�) = 𝑀𝑆𝐸  

 
where the first term measures the variance, while 
the second term measures bias. To see these 
measures of the estimator, we expand B̂ in (14b) by 
(12) to find  

 
B̂ = (X′U−1X)−1X′U−1T�̂�     = B + (X′U−1X)−1X′U−1Ab̂ +
(X′U−1X)−1X′U−1ε�̂�   

 
Hence, the bias and variance-covariance matrix of 

this estimator are, respectively, 
 

𝐵𝑖𝑎𝑠(B̂) = 𝐸(B) − B = (X′U−1X)−1X′U−1Ab̂   

𝑉𝑎𝑟(B̂)  = 𝜎2(X′U−1X)−1X′U−1X′U−1(X′U−1X)−1  

 
where 𝜎2 is illustrated in (16). 

3. Choice of the smoothing parameter 

In literature there are many classical methods 
used to select the amount of smoothing. Here we 
consider and compare the most widely used three 
selection criteria. As described in previous sections, 
these are AICc, GCV and Mallow’s Cp. The positive 
parameter λ that minimizes any selection criteria is 
selected as an optimum smoothing parameter. 

 
AICc criterion  
Hurvich et al. (1998) proposed an improved version 
of classical Akaike’s information criterion (AIC) to 
handle parameter selection problems. This selection 
criterion is denoted by AICc and defined as follows 

 
𝐴𝐼𝐶𝑐(𝜆) = 1 + log[‖(H𝜆 − I)T�̂�‖2/𝑛 ] + [2(𝑡𝑟(H𝜆) + 1)/
𝑛 −  𝑡𝑟(H𝜆) − 2]  

 
where H𝜆 is a smoother matrix in (14c). 

 
GCV criterion  
The GCV is the most widely used criterion for 
selecting the smoothing parameter. It provides a 
more efficient calculation of leave-one out cross 
validation (CV). This criterion is described by Craven 
and Wahba (1978). 

 
𝐺𝐶𝑉(𝜆) = 𝑛−1[‖(H𝜆 − I)T�̂�‖2]/[𝑛−1𝑡𝑟(I − H𝜆]2  

 
Mallows’ Cp criterion  
The Cp is a common selection criterion proposed by 
Mallows (1973) for providing an MSE estimation 
scaled by 𝜎2. It is given as follows 

 

𝐶𝑝(𝜆) =
1

𝑛
[‖(H𝜆 − I)T�̂�‖2 + 2𝜎2𝑡𝑟(H𝜆) − 𝜎2]   

 

In practice if 𝜎2 is unknown, it is can be provided 
as 

 

�̂�𝜆𝑝

2 = ‖(H𝜆𝑝
− I) T�̂�‖2/ 𝑡𝑟(I − H𝜆𝑝

)  

 
where 𝜆𝑝 is the pre-chosen value of the smoothing 

parameter with any selection method. 

4. Numerical studies 

In this section, we consider the different 
estimators for the components of the censored 
semiparametric regression model (12). It is 
discussed the estimator’s finite properties with the 
two data sets. First data set is consisted by a real 
data from cancer patients, while second data set is 
obtained by a simulated data based on different 
censoring levels and sample sizes. 

4.1. Real data example 

We use a right censored real data from bowel 
cancer patients in Izmir, Turkey. To analyze the 
survival times of the patients we may write the 
semiparametric regression model corresponding to 
Eq. 11 as 

 

𝐿(𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙 𝑇𝑖𝑚𝑒𝑖) = 𝛽1𝐴𝑔𝑒𝑖 + 𝛽2𝑂𝑝. 𝑇𝑖𝑚𝑒𝑖 + 𝛽3𝐷𝑒𝑔𝑖 +
𝑓(𝐴𝑙𝑏𝑖) + 𝜀𝑖                                       (17) 

 

where L (Survival Time) denote log survival times, 
Age and Op.time show age and operation time of the 
patients, respectively, Deg is degree of the cancer 
and Alb is albumin values from bowel cancer 
patients. The comparative outcomes from the 
parametric component of the model (17) are 
summarized in the Table 1. Note that the Table 1 
show the estimated coefficients and their variances 
obtained by penalized spline estimators based on 
AIC, GCV and Cp criteria. From Table 1 we see that 
Cp has a better performance than other selection 
criteria in estimating the parametric component. 

 

Table 1: The estimated regression coefficients and their 
variances from the model (16) 

 
𝛽1 𝛽2 𝛽3 

Criteria Est. Var. Est. Var. Est. Var. 
AIC -0.029 0.003 -0.005 0.001 0.266 0.114 
GCV -0.029 0.003 -0.005 0.001 0.261 0.110 
Cp -0.028 0.002 -0.005 0.001 0.277 0.102 

 

To visualize function 𝑓(. ), we use a scatter 
diagram by plotting the smooth curve with 95% 
confidence intervals (see second panel of Fig. 1). 
Also, it is illustrated a scatter diagram of the survival 
times against Alb in the first panel of the Fig. 1. The 
second panel in Fig. 1 shows that relationship 
between 𝐴𝑙𝑏𝑖 and 𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙 𝑇𝑖𝑚𝑒𝑖 may be nonlinear. 
In our context, the variable 𝐴𝑙𝑏𝑖 is used as 
nonparametric part of the model (17). The main idea 

is to obtain a useful approximation 𝑓(𝐴𝑙𝑏𝑖) to the 
real function 𝑓(𝐴𝑙𝑏𝑖). For these purposes, we fit a 
3th-degree piecewise polynomial spline, as specified 
in (9), for the nonlinear 𝑓(𝐴𝑙𝑏𝑖)using penalized 
spline method based on smoothing parameter λ 
selected by AICc, GCV, and Cp criteria, respectively. 
The estimated three spline fits are illustrated in the 
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Fig. 2. In order to assess the quality of these fits we used the mean square error (MSE) values, given by  
 

 
Fig. 1: Left panel denotes the scatterplot of 𝐴𝑙𝑏𝑖  and 𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙 𝑇𝑖𝑚𝑒𝑖  whereas right panel shows the scatterplot residuals 

from regression of 𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙 𝑇𝑖𝑚𝑒𝑖 on 𝐴𝑙𝑏𝑖 . The shaded regions denote the 95% confidence interval obtained by 𝑓(𝐴𝑙𝑏𝑖) ±

1.96√𝑉𝑎𝑟 (𝑓(𝐴𝑙𝑏𝑖)) 

 

𝑀𝑆𝐸(𝜆) =
1

𝐷𝐹
∑  [𝑓𝜆(𝐴𝑙𝑏𝑖) − 𝑓𝜆(𝐴𝑙𝑏𝑖)]

287
𝑖=1                           (18) 

 
where 𝐷𝐹 = 𝑛 − 𝑡𝑟(2H𝜆 − H𝜆

2). The MSE values 
obtained from fits are 6.6779, 6.4497 and 5.9765, 
respectively. 

It is easy to see that Cp outperforms the 
remaining two criteria, AICc and GCV, in estimating 
the nonparametric component of the model (17) 
with right censored data. 

Fig. 2: Real observations and their smoothed curves 
obtained by penalized spline estimators based on AICc, 

GCV, and Cp criteria, respectively. 

4.2. Simulation study 

In this section, we carried out a Monte Carlo 
simulation study to show the practical performance 
of smoothing parameter criteria. To see the 
performance of the small, medium and large samples 
of each selection criteria, we consider three 
censoring levels (CLs), 10%, 30%, and 50% for each 
samples sizes with n = 50; 100; and 200. In this 
study, we generate the censoring variable as below; 

Condition 1: 𝑃(𝐶) = |0.85 + 0.15𝛾|, 𝑖𝑓 𝛾 ≤ 1 𝑒𝑙𝑠𝑒 𝑃(𝐶) =
0.90 
Condition 2: 𝑃(𝐶) = |0.65 + 0.15𝛾|, 𝑖𝑓 𝛾 ≤ 1 𝑒𝑙𝑠𝑒 𝑃(𝐶) =
0.70 
Condition 2: 𝑃(𝐶) = |0.45 + 0.15𝛾|, 𝑖𝑓 𝛾 ≤ 1 𝑒𝑙𝑠𝑒 𝑃(𝐶) =
0.50 

 

where 𝛾 = |𝑍𝑖 − 4| and P(C) determines the 
probability of an observation satisfying 𝛾 = 1 (Wang 
et al., 2004). Under these conditions we obtain three 
censoring levels, 10%, 30% and 50%, respectively. 
The empirical data is generated by censored 
semiparametric regression model in generic form 

 
𝑇𝑖 = 2𝑋1𝑖 + 1𝑋2𝑖 + 1.5𝑋3𝑖 + 𝑓(𝑍𝑖) + 𝜀𝑖 , 𝑖 = 1, … , 𝑛         (19) 

 
where 𝑋𝑗’s have uniform distribution as U(0,1), 

(j=1,2,3), 𝑓(𝑍𝑖) = exp{sin(𝑍𝑖) cos(3𝑍𝑖) + √𝑍𝑖} with 

𝑍𝑖 = 4(𝑖 − 0.5)/𝑛and 𝑍𝑖~𝑁(0,1). In here, however, 
because of the censoring, we consider transformed 
response (or synthetic) observations 𝑇𝑖�̂�  instead of 
𝑇𝑖 as described in the section 3. 

For each censoring levels and sample sizes we 
conducted 1000 Monte Carlo simulation studies, and 
obtained 1000 estimates of the vector β =
(𝛽1, 𝛽2, 𝛽3)′ = (2,1, −1.5)′s forming the parametric 
part, and calculated 1000 smooth curves, 
constructing the nonparametric part, of the censored 
semiparametric model (19). The results of the 
simulation study are summarized in the rest of 
paper. 

In this simulation study, because of nine different 
configurations are made, it is not possible to display 
all these configurations here. Therefore, only four 
different configurations are given in Figs. 1-4. The 
left panels of Figures show the estimates of f(Z) 
obtained by selecting appropriate smoothing 
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parameters with AIC, GCV and Cp criteria under the 
mentioned censoring levels and sample sizes. The 
right panels of the same Figures display the box plots 
of the MSE values for nonparametric component 
estimates from the censored semiparametric model. 

 

 
Fig. 3: The left panel displays three estimated curves of the 
nonparametric component together with real observations 
for n=50 and CL=10%. The right panel shows the box plots 

of the MSE values for AICc, GCV, and Cp criteria 
 

Outcomes from the CL=30% for small sized 
samples are similar to Fig. 3 and are not reported. 
Furthermore, findings from the other sample sizes 
(n=100 and 200) for CL=10% and CL=30% (not 
displayed here) are similar to Fig. 3 and also not 
given here. Accordingly, it can be said that criteria 
are not superior to each other under the low and 
medium censoring levels. On the other hand, the 
effect of the heavy censoring levels is given in the 
Figs. 3-5 for small, medium, and large sample sizes, 
respectively. 

It is seen from these Figures that the MSE values 
of the Cp are smaller than other criteria. This means 
that Cp is better than other criteria in terms of MSE 
for nonparametric component with heavy censoring 
level. Also, as can be seen Fig. 5, the two profile 
curves (corresponding to GCV and AICc) are located 
very close to each other. 

In Table 2 “Bias” is biases of the estimated 
coefficients from simulation mean, “Std” is the 
simulation standard deviation, and “MSE” is the 
simulation mean square error of the estimated 
parameters, 𝛽1, 𝛽2 and 𝛽3 respectively. Generally, the 
effect of the censoring levels tends to increase the 
variances of the estimated regression coefficients. 
The precision is declined as the censoring level 
increases. 

 

 
Fig. 4: Similar to Fig. 1 but for n=50 and CL=50% 

 
Table 2: Simulation outcomes from parametric component of the censored semiparametric model (19) 

 
𝛽1 𝛽2 𝛽3 

 
Bias Std MSE Bias Std MSE Bias Std MSE 

 
n=50, CL=10% 

AIC 0.368 0.226 0.187 0.191 0.174 0.036 0.319 0.206 0.127 
GCV 0.398 0.223 0.236 0.205 0.166 0.028 0.837 0.203 0.136 
Cp 0.346 0.221 0.126 0.179 0.165 0.027 0.797 0.199 0.113 

 
n=50, CL=30% 

AIC 0.396 0.342 0.064 0.130 0.328 0.055 0.008 0.309 0.040 
GCV 0.458 0.347 0.072 0.143 0.331 0.049 0.172 0.309 0.023 
Cp 0.372 0.321 0.056 0.172 0.318 0.043 0.354 0.299 0.0325 

 
n=50, CL=50% 

AIC 0.499 0.343 0.137 0.239 0.327 0.103 0.211 0.328 0.057 
GCV 0.641 0.348 0.147 0.132 0.327 0.109 0.010 0.319 0.051 
Cp 0.591 0.333 0.136 0.248 0.313 0.100 0.003 0.301 0.048 

 
n=200, CL=10% 

AIC 0.188 0.192 0.300 0.362 0.132 0.099 0.372 0.143 0.119 
GCV 0.191 0.193 0.302 0.363 0.130 0.099 0.374 0.149 0.119 
Cp 0.191 0.192 0.301 0.365 0.129 0.097 0.377 0.143 0.117 

 
n=200, CL=30% 

AIC 0.243 0.213 0.111 0.186 0.172 0.019 0.297 0.189 0.109 
GCV 0.316 0.214 0.119 0.255 0.171 0.016 0.359 0.190 0.109 
Cp 0.250 0.217 0.112 0.195 0.171 0.015 0.301 0.180 0.101 

 
n=200, CL=50% 

AIC 0.294 0.287 0.052 0.042 0.192 0.006 0.120 0.203 0.009 
GCV 0.328 0.287 0.048 0.277 0.192 0.005 0.387 0.200 0.011 
Cp 0.307 0.287 0.043 0.378 0.180 0.004 0.492 0.205 0.010 

 

In addition, the precision is also improved as the 
sample size increases. To explain this issue, it is 
carried out the averages and the standard errors for 
the estimates of the regression coefficients obtained 
by the model (19) based on penalized spline for each 
criterion, sample, and censoring levels. The findings 
are illustrated in Table 2. In our context, Table 2 
displays the biases and standard deviations of the 

vector β̂ = (�̂�1, �̂�2, �̂�3)
′
 over the 1000 simulations. To 

assess the quality of the vector β̂, we used MSE value 
which is given by; 

 

𝑀𝑆𝐸𝑗 =
1

1000
∑ (�̂�𝑖𝑗 − 𝛽𝑗)

2
,   𝑗 = 1,2,31000

𝑖=1                  (20) 

 

From the Table 1 we can see that the biases of β̂ 
are very small. In this case, it can be said that 
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estimations of regression coefficients are quite 
satisfying for the three sample sizes and censoring 
levels. Especially the coefficients and their standard 
deviations estimated by Cp criterion are smaller than 
other criteria for all censoring levels and sample 
sizes. It appears that the Cp method generally 
outperforms other methods.  

In addition, since the outcomes from medium 
sized samples (n = 100) are similar to those from 
large sized samples (n= 200), they are not reported 
here. 

 
Fig. 5: Similar to Fig. 1 but for n=100 and CL=50% 

 
In particular, when n is large (n = 200) which is 

illustrated in Fig. 6, the AICc method has small biases 
for all censoring levels. This means that the AICc 
method gives more unbiased estimates for large 
sized samples.  

 

 
Fig. 6: Similar to Fig. 1 but for n=200 and CL=50% 

 
However, when n is large, estimates of parametric 

coefficients, MSE, standard deviation values are 
more stable for Cp method under all censoring 
levels. Generally, the estimates obtained by three 
criteria are satisfying for all censoring levels. 
Furthermore, for each selection methods MSE values 
are very close to each other, especially for n = 200. 
This means that the remaining two estimators also 
work well. In summary, as can be seen from Table 2, 
the criteria giving smallest MSE are indicated by bold 
color. As expected, the MSE values are improved as 
the sample sizes increases.  
 
Samples 
There is not much of a difference between the three 
smoothing parameter selection criteria. However, 
MSE values of large sized samples are more stable 
than those of small sized samples in all censoring 
levels. 

5. Conclusion 

In this paper, we examined the performance of 
semiparametric model when response variable is 
randomly right-censored. As known, in 
semiparametric models, smoothing parameter 
selection plays an important role. Based on three 
selection criteria, we carried out three different 
models with right censored data. It is considered 
regression spline (penalized spline) method to 
estimate model parameters. In order to obtain 
accurate estimates, the smoothing parameter should 
be carefully chosen.  

The main goal is to determine the selection 
criterion that gives better model fits. The following 
equation represents the MSE values of the fitted 
semiparametric models, estimated by averaging at 
the 1000 simulated data points. The mention MSE 
values are calculated as 

 

𝑀𝑆𝐸 =
1

1000
∑ (𝑇𝑖�̂� − �̂�𝑖�̂�)

21000
𝑖=1                                   (21) 

 
In this paper, we focused on the measure the 

performances of the selection methods and quality of 
the estimation method. For these purposes, we 
carried out both simulation study and real data 
example with using survival data. When we examine 
the results of simulation and real data experiments, 
we encountered some expected situations such as, 
big MSE values for high censoring levels for all 
selection methods, better estimations when low 
censoring levels or high sample sizes. In here Cp 
method illustrates better performance and 
estimations and note that AICc and GCV methods 
have similar results. 

According to summarized results expressed in the 
Table 3, we can present the following 
recommendations and conclusions: 

 
 Especially for large sample sizes and censoring 

levels, Cp has gave a better performance than AICc 
and GCV. In this case, the use Cp would be more 
beneficial. 

 For small and medium sized samples, AIC gives a 
better performance than GCV and Cp criteria under 
the censoring level 30%. For especially medium 
censoring levels, the implementation of AIC would 
seem to be more appropriate. 

 
Table 3: Estimated MSE values of the model for each 

selection methods 
n C.L. AIC GCV Cp 

50 
10 0.388 0.388 0.386 
30 0.435 0.445 0.441 
50 0.515 0.525 0.509 

100 
10 0.208 0.209 0.208 
30 0.292 0.294 0.293 
50 0.338 0.342 0.333 

200 
10 0.139 0.139 0.131 
30 0.115 0.116 0.105 
50 0.261 0.262 0.252 
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Appendix A. Synthetic data transformation 

As known, the mentioned regression function in this 
paper is a conditional expectation when response 
variable is censored from the right. Normally 
expectation of 𝑇𝑖 values are 

1

𝑛
∑ 𝑇𝑖

𝑛
𝑖=1  

This is the standard estimation of 𝐸(𝑇𝑖). Because 
of censoring, instead of 𝑇𝑖 , we use (𝐿𝑖 , 𝛿𝑖) as in Eq. 2. 
If censoring distribution G is known, then the 
unbiased estimate of 𝐸(𝑇𝑖) will be as follows: 

1

𝑛
∑

𝐿𝑖𝛿𝑖

𝐺(𝐿𝑖)

𝑛
𝑖=1

In general, censoring distribution G is unknown. 
In this case, 𝐸(𝑇𝑖) on a certain s point is estimated 
with help of Kaplan-Meier mean 

𝑀𝐾𝑀 =
1

𝑛
∑

𝛿𝑖𝐿𝑖

�̂�(𝐿𝑖)
𝑛
𝑖=1 =

1

𝑛
∑

𝛿𝑖𝑇𝑖

�̂�(𝑇𝑖)
𝑛
𝑖=1  = ∫ 𝐹(𝑠|𝑋 = 𝑥, 𝑍 =

∞

0

𝑧)𝑑𝑡   = ∫ 𝐹(𝑠|𝑋 = 𝑥, 𝑍 = 𝑧)𝑑𝑡
𝜏𝐹

0
 

Proof of equation is already illustrated by Susarla 
et al. (1984). According to that it can be said that; 

𝑀𝐾𝑀 → 𝐸(𝑇). 

Appendix B. Synthetic response observation 

When 𝑛 → ∞ it can be said that 𝐸(𝜀𝑖𝐺) ≅ 0 which is 
also means that 𝐸(𝜀𝑖) ≅ 0. The vector form of this 
expression is given by 𝐸(ε) ≅ 0. Let us consider the 
following model, T = XB + Ab + ε and 𝐸(T) = XB̂ +

Ab̂. Also B̂ = (X′U−1X)−1X′U−1T and b̂ =
(A′A + λD)−1A′(T − XB) it is easily seen that the 
model 

ε = T − XB̂ + Ab̂     = T − T̂

The expected value of the ε is 

𝐸(ε) = 𝐸(T − �̂�) = 𝐸(𝑇) − 𝐸(�̂�) = XB̂ + Ab̂ − 𝐸(T̂) =

XB̂ + Ab̂ − 𝐸(XB̂ + Ab̂) = XB̂ + Ab̂ −

𝐸 (
X(X′U−1X)−1X′U−1T

− ((A′A + 𝜆D)−1A′(T − XB̂))
) = XB̂ + Ab̂ −

𝐸 (
X(X′U−1X)−1X′U−1T − (A′A + 𝜆D)−1A′T

−(A′A + 𝜆D)−1A′X(X′U−1X)−1X′U−1T
) = XB̂ + Ab̂ −

𝐸(𝑇 − (A′A + 𝜆D)−1A′T + (A′A + λD)−1A′T) = XB̂ + Ab̂ −

𝐸(T) = XB̂ + Ab̂ − XB̂ − Ab̂ = 0;  

hence, as claimed for 𝑛 → ∞, 𝐸(εG) = 𝐸(ε) = 0. 
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